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1. Introduction

Supersymmetry (SUSY) is currently believed to play an important role in physics beyond

the Standard Model (SM). A compelling argument in favour of SUSY is the particle content

of the MSSM, that leads in a natural way to the unification of the three gauge couplings

at a high energy scale µ ≃ 1016 GeV, in agreement with predictions of Grand Unification

Theories (GUT) [1 – 3].

Apart from the gauge coupling unification, in GUT models based on simple groups

such as SU(5) [4] or SO(10) [5], also the bottom (yb) and tau (yτ ) Yukawa couplings unify

at the GUT scale. For some models based on SO(10) (or larger groups) even the unification

of the bottom, tau and top (yt) Yukawa couplings is predicted. However, the condition of

Yukawa coupling unification can be fulfilled within the MSSM only for two regions of tan β,

the ratio of Higgs field vacuum expectation values: tan β ≈ 1 and tanβ ≈ 50 [6 – 8]. A main

feature of SUSY models with large tanβ is that the supersymmetric radiative corrections

to fermion masses and couplings can be as large as the leading order (LO) contributions

[7, 9, 10]. This renders the knowledge of the higher order (HO) corrections in perturbation

theory mandatory. On the other hand, the unification condition becomes very sensitive to

the low energy parameters [11]. This property can be exploited to greatly constrain the

allowed MSSM parameter space.

With the advent of the CERN Large Hadron Collider (LHC), we will be able to probe

the realization of SUSY in nature to energy scales of O(1) TeV. In particular, precision
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measurements and computations will allow to test the low-energy supersymmetric rela-

tions between the particle masses and couplings. It is often argued (for reviews see e.g.

refs. [12, 13]) that, from the precise knowledge of the low-energy supersymmetric parame-

ters one can shed light on the origin and mechanism of supersymmetry breaking and even

on physics at much higher energies, like the GUT scale. The extrapolation of the supersym-

metric parameters measured at the TeV energy scale to the GUT-scale raises inevitably the

question of uncertainties involved. Currently, there are four publicly available spectrum

generating codes [14 – 17] based on two-loop order MSSM renormalization group equations

(RGEs) [18 – 21] subjected to two types of boundary conditions. One set of constraints

accounts for the weak-scale matching between the MSSM and SM parameters to one-loop

order [22]. The second one allows for the SUSY breaking at the high scale according to

specific models like minimal supergravity, gauge mediation and anomaly mediation. The

approximations within the codes differ by higher order corrections and by the treatment

of the low-energy threshold corrections. The typical spread of the results is within few

percents, which does not always meet the experimental accuracy [23]. Along the same line,

recent analyses [24, 25] have proven that the three-loop order effects on the running of the

strong coupling constant αs and the bottom quark mass mb may exceed those induced by

the current experimental accuracy [26, 27].

Very recently, ref. [28] computed the two-loop SQCD and top-induced Supersymmetric

Electroweak (SEW) corrections to the effective bottom Yukawa couplings. The knowledge

of the two-loop corrections allows predictions for the branching ratios of the MSSM Higgs

bosons with per-cent level accuracy.

The aim of this paper is to compute the weak-scale matching relations for the strong

coupling constant and the bottom quark mass with two-loop accuracy, taking into ac-

count the exact dependence on the particle masses. This will extend the study of ref. [24]

allowing phenomenological analyses based on quasi-realistic mass spectra for SUSY par-

ticles, with three-loop order accuracy. However, we will consider in this paper only

the O(α2
s) corrections from SQCD and postpone the study of the SEW contributions

O(αsy
2
t , αsy

2
b , y

4
t , y

2
t y

2
b , y

4
b ) to further investigations. Whereas the SEW corrections to the

decoupling coefficient of αs are expected to be negligible, their numerical impact on the

running bottom quark mass can become as important as those from SQCD. At the one-

loop order [22], the main contributions to the bottom-quark mass decoupling coefficient

arise from diagrams containing gluino- and Higgsino-exchange. In the most regions of the

MSSM parameter space the gluino contribution is the dominant one and can be as large

as the tree-level bottom quark mass. However, there are domains in the parameter space

where the corrections due to gluino- and Higgsino-exchange can become of the same order

and have opposite sign. These regions contain the special points for which the Yukawa

coupling unification occurs [11, 29]. For the MSSM parameters for which the radiative

corrections to the bottom quark mass are comparable with the LO ones, ref. [30] proposed

a method to resum them to all orders in perturbation theory. A numerical comparison

with the results of ref. [30] can be found in section 5.

The paper is organized as follows: in section 2 and section 3 we discuss the theo-

retical framework and the renormalization scheme we use. In section 4 we present the
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analytical one- and two-loop results. The latter ones are displayed in analytical form for

three simplifying mass hierarchies among the SUSY particles. The numerical effects are

studied in section 5.

2. Framework

As already stated above, the underlying motivation for the running analysis is to relate

physical parameters measured at the electroweak scale with the Lagrange parameters at the

GUT scale. The running parameters are most conveniently defined in mass-independent

renormalization schemes such as MS [31] for the SM parameters and DR [32] for the

MSSM parameters. It is well known that in such “unphysical” renormalization schemes

the Appelquist-Carazzone decoupling theorem [33] does not hold in its naive form. Quan-

tum corrections to low-energy processes contain logarithmically enhanced contributions

from heavy particles with masses much greater than the energy-scale of the process under

consideration. An elegant approach to get rid of this unwanted behaviour in the MS or DR

scheme is to formulate an effective theory (ET) [34, 35] integrating out all heavy particles.

The coupling constants defined within the ET must be modified in order to account for

the effects of the heavy fields. They are related to the parameters of the full theory by the

so-called matching or decoupling relations.

For moderate mass splittings between SUSY particles, i.e. there are no large logarithms

in the theory that have to be resummed by means of RGEs, the decoupling of heavy particles

might be performed in one step [36]. The energy-scale at which the decoupling is performed

is not fixed by the theory. It is usually chosen to be µ ≃ M̃ , where M̃ is a typical heavy

particle mass. The MSSM parameters at energies E ≃ M̃ can be determined from the

knowledge of the corresponding SM parameters and the associated decoupling relations.

The decoupling coefficients for the strong coupling constant and for the light quark

masses are known in QCD with four- [37, 38] and three-loop [34] accuracy, respectively.

Due to the presence of many mass scales, their computation within SQCD and SEW is

quite involved. At one-loop order, they are known exactly [22, 39]. At two-loop order, the

decoupling coefficient for the strong coupling is known only for specific mass hierarchies [24].

Recently, the two-loop SQCD corrections for the decoupling coefficient of the bottom-quark

mass was computed [39]. The focus of this paper is the analytical computation of the

decoupling relations for the strong coupling constant and the bottom-quark mass within

SQCD through two-loops using a different method as ref. [39]. The comparison of the

results will be discussed in the next section.

We consider SQCD with nf active quark and ns = nf active squark flavours and ng̃ = 1

gluinos. Furthermore, we assume that nl = 5 quarks are light (among which the bottom

quark) and that the top quark and all squarks and the gluino are heavy. Integrating out the

heavy fields from the full SQCD Lagrangian, we obtain the Lagrange density corresponding

to the effective QCD with nl light quarks plus non-renormalizable interactions. The latter

are suppressed by negative powers of the heavy masses and will be neglected here. The

effective Lagrangian can be written as follows:

L′(g0
s ,m

0
q , ξ

0;ψ0
q , G

0,a
µ , c0,a; ζ0

i ) = LSQCD(g0′
s ,m

0′
q , ξ

0′;ψ0′
q , G

0′,a
µ , c0′,a) , (2.1)

– 3 –



J
H
E
P
0
2
(
2
0
0
9
)
0
3
7

g
g

t̃1

t̃1

g
g

t t̃2

g̃
t t̃2

c c
c

g
t̃1

t̃1

g

c c
c

g g

b̃1

g

c

c
b̃2 g

b̃2

b̃2
g

c
g

c

c

c

c

g

b̃2b̃2
g

(a)

b

b

g̃

b̃1

b b
g̃

b̃2 b̃2

b̃2

b

b

g̃ b̃1

b

b̃1 g̃

b b

b̃2

g̃
t

t̃1

g̃

b b
b

g
t

t

g

b b
b

g
t̃2

t̃2

g

(b)

Figure 1: Sample diagrams contributing to ζ3, ζ̃3, ζ̃1 and ζm with gluons (g), ghosts (c),

bottom/top quarks (b/t), bottom/top squarks (b̃/t̃) and gluinos (g̃).

where ψq, G
a
µ, c

a denote the light-quark, the gluon and the ghost fields, respectively, mq

stands for the light quark masses, ξ is the gauge parameter and gs =
√

4παs is the strong

coupling. The index 0 marks bare quantities. LSQCD is the usual SQCD Lagrangian from

which all heavy fields have been discarded. As a result the fields, masses and couplings

associated with light particles have to be rescaled. They are labeled by a prime in eq. (2.1)

and are related with the original parameters through decoupling relations:

g0′
s = ζ0

gg
0
s , m0′

q = ζ0
mm

0
q , ξ0′ − 1 = ζ0

3 (ξ0 − 1) ,

ψ0′
q =

√

ζ0
2ψ

0
q , G0′,a

µ =
√

ζ0
3G

0,a
µ , c0′,a =

√

ζ̃0
3c

0,a . (2.2)

Refs. [34] showed that the bare decoupling constants ζ0
m, ζ

0
2 , ζ

0
3 , ζ̃

0
3 can be derived from the

quark, the gluon and the ghost propagators, all evaluated at vanishing external momenta.

As a result, for calculations performed within the framework of Dimensional Regulariza-

tion/Reduction (DREG/DRED) only the diagrams containing at least one heavy particle

inside the loops do not vanish. In figure 1 are shown sample Feynman diagrams contributing

to the decoupling coefficients for the strong coupling (a) and the bottom-quark mass (b).

For the computation of ζg one has to use the well-known Ward identities. A convenient

choice is the relation:

ζ0
g =

ζ̃0
1

ζ̃0
3

√

ζ0
3

, (2.3)

where ζ̃0
1 denotes the decoupling constant for the ghost-gluon vertex.

The finite decoupling coefficients are obtained upon the renormalization of the bare pa-
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rameters. They are given by

ζg =
Zg

Z ′
g

ζ0
g , ζm =

Zm

Z ′
m

ζ0
m , (2.4)

where Z ′
g and Z ′

m correspond to the renormalization constants in the effective theory. Since

we are interested in the two-loop results for ζi, i = g,m, the corresponding renormalization

constants for SQCD and QCD have to be implemented with the same accuracy. Analytical

results for them can be found in refs. [35, 20, 40].

As mentioned above, the decoupling coefficients can be related with vacuum integrals.

The latter can be recursively reduced to a master-integral [41] using the method of integra-

tion by parts [42]. Given the large number of diagrams and occurrence of many different

mass scales, we computed them with the help of an automated setup. The Feynman dia-

grams were generated with QGRAF [43] and further processed with q2e [44]. The reduction of

various vacuum integrals to the master integral was performed by a self written FORM [45]

routine. The reduction of topologies with two different massive and one massless lines

requires a careful treatment. The related master integral can be easily derived from its

general expression valid for massive lines, given in ref. [41].

3. Regularization and renormalization scheme

In our setup, we used the squark mass eigenstates and their mixing angles as input param-

eters. For convenience, we give below the relations between them and the parameters of

the MSSM Lagrangian.

The squark mass eigenstates q̃1,2 and their mass eigenvalues mq̃1,2
are obtained by

diagonalizing the mass matrix

Mq̃ =

(

M2
L mqXq

mqXq M2
R

)

, (3.1)

where we used the notation

Xq = Aq − µ

{

tan β , for down-type quarks

cot β , for up-type quarks
,

M2
L = M2

Q̃
+m2

q +M2
Z(Iq

3 −Qqs
2
W ) cos 2β ,

M2
R = M2

D̃,Ũ
+m2

q +M2
ZQqs

2
W cos 2β . (3.2)

Here mq, I
q
3 and Qq are the mass, isospin and electric charge of the quark q, respectively,

and sW = sin θW . The parameters MQ̃ and MD̃,Ũ are the soft supersymmetry breaking

masses, Aq is a trilinear coupling and µ is the Higgs-Higgsino bilinear coupling.

The squark mass eigenvalues are defined through the unitary transformation

(

m2
q̃1

0

0 m2
q̃2

)

= Rq̃Mq̃R†
q̃ , with Rq̃ =

(

cos θq sin θq

− sin θq cos θq

)

, (3.3)
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and the squark mixing angle through

sin 2θq =
2mqXq

m2
q̃1

−m2
q̃2

. (3.4)

Since we consider the two-loop O(α2
s) corrections, only the one-loop O(αs) counter-

terms for the input parameters are required. We have chosen the DR scheme to renormalize

the strong coupling constant, and the on-shell scheme for the masses of the heavy particles,

i.e. the gluino, squarks and top quark. The corresponding one-loop renormalization con-

stants are known analytically (see, e.g., ref. [22]). For the computation of the two-loop ζmb
,

also the one-loop counterterm for the sbottom mixing angle θb is required. We adopted the

on-shell renormalization prescription as defined in ref. [46]

δθb =
ReΣ

b̃12
(m2

b̃1
) + ReΣ

b̃12
(m2

b̃2
)

2(m2
b̃1
−m2

b̃2
)

, (3.5)

where Σb̃12
is the non-diagonal on-shell sbottom self-energy.

As we neglect the bottom-quark mass w.r.t. heavy particle masses, an explicit depen-

dence of the radiative corrections on mb can occur only through bottom Yukawa couplings.

In order to avoid the occurrence of large logarithms of the form α2
s log(µ2/m2

b) with µ ≃ M̃ ,

we have renormalized the bottom quark mass in the DR scheme. In this way, the large

logarithms are absorbed into the running mass and the higher order corrections are main-

tained small.

The renormalization prescription for the trilinear coupling Ab is fixed by the tree-level

relation eq. (3.4), while the parameters µSUSY and tan β do not acquire O(αs) corrections

to the one-loop level. Generically, the counterterm for Ab can be expressed as

δAb =

(

2 cos 2θbδθb + sin 2θb

δm2
b̃1
− δm2

b̃2

m2
b̃1
−m2

b̃2

− sin 2θb
δmb

mb

)

m2
b̃1
−m2

b̃2

2mb
, (3.6)

where δmb and δm2
b̃1,2

are the counterterms corresponding to bottom-quark and squark

masses, respectively. Due to the use of different renormalization prescriptions for the

bottom/sbottom masses and mixing angle, the parameter Ab is renormalized in a mixed

scheme.

For the regularization of ultra-violet divergencies, we have implemented DRED with

the help of the so-called ǫ-scalars [47]. In softly broken SUSY theories, as it is the case of

MSSM/SQCD, they get a radiatively induced mass. We choose to renormalize their mass

in the on-shell scheme, requiring that the renormalized mass is equal to zero.

There are also other approaches available in the literature. We want to mention the one

proposed in Ref [48], where the ǫ-scalars are treated as massive particles. This approach is

known in the literature as the DR′ scheme. In this case, the ǫ-scalars have to be decoupled

together with the heavy particles of the theory [39]. The advantage of this method is that it

directly relates SQCD parameters regularized within DRED with those of QCD regularized

within DREG, which are known from experiments. The price of this “shortcut” is on one

hand, that additional diagrams containing the ǫ-scalars as massive particles occur in the

– 6 –
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calculation of the decoupling coefficients. On the other hand, the contributions originating

from the change of regularization scheme and those from the decoupling of heavy particles

are not distinguishable anymore.

In our approach the change of regularization scheme from DRED to DREG has to

be performed explicitly within QCD [19, 20, 49]. For our purposes, the two-loop conver-

sion relations for the strong coupling constant and the bottom-quark mass are required.

The complication that arises at this stage is the occurrence of the evanescent coupling αe

associated with the ǫ-scalar-quark-quark vertex. This has to be distinguished from the

gauge coupling within non-supersymmetric theories (e.g. QCD). However, in SQCD they

are identical with the gauge couplings, as required by SUSY. Using the ET procedure, we

can relate them with the strong coupling within the full theory with the help of decoupling

relations similar with those introduced in eq. (2.2)

α′
e = ζeαe = ζeαs . (3.7)

Following the method described above, one can calculate ζe evaluating the ǫ-scalar and

quark-propagators and the ǫ-scalar-quark-quark vertex at vanishing external momentum.

In ref. [25], its one-loop expression was computed under the simplifying assumption of

a degenerate SUSY-mass spectrum. In principle, for our numerical analyses, that rely on

solving a system of coupled differential equations involving also the evanescent coupling αe,

even the two-loop order corrections to ζe are needed. However, from the explicit calculation

it turned out that the numerical effects induced by the two-loop corrections to ζe are below

the per-mille level. For simplicity, we do not display the corresponding two-loop results in

the following. The analytical formulae are available upon request from the authors.

The method outlined here and the one introduced in ref. [39] for the calculation of the

decoupling coefficient of the bottom-quark mass are equivalent. This has to be understood

in the usual sense, that the predictions for physical observables made in one scheme at a

given order in perturbation theory can be translated to the other scheme through redefini-

tions of masses and couplings. We have explicitly checked implementing additionally the

method of ref. [39] in our setup the equivalence property for the decoupling coefficient of

the bottom-quark mass ζm through two-loop order. Apart from the obvious rescaling of

the strong coupling and the bottom quark mass, also the sbottom masses have to be mod-

ified [48]

m2
b̃
|DR′ = m2

b̃
|DR − αDR

s

2π
CFm

2
ǫ . (3.8)

Here CF is the Casimir invariant in the fundamental representation and mǫ denotes the

mass of the ǫ-scalars. The indices DR and DR′, respectively, specify the regularization

scheme. We also compared numerically the results for the two-loop ζmb
obtained using our

method with the ones depicted in figure 3 of ref. [39] and found very good agreement.
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4. Analytical results

4.1 One-loop results

The exact one-loop results for the decoupling coefficients of the strong coupling constant

ζs and bottom-quark mass ζm can be found in refs. [22, 39]. The analytical formula for ζe
is new and we give it below up to O(ǫ).

ζs =1 +
α

(SQCD)
s

π

[

− 1

6
CALg̃ −

1

6
Lt −

∑

q

∑

i=1,2

1

24
Lq̃i

− ǫ

(

CA

12

(

L2
g̃+ζ(2)

)

+
1

12

(

L2
t +ζ(2)

)

− 1

48

∑

q

∑

i=1,2

(

L2
q̃i

+ζ(2)
)

)

]

, (4.1)

ζe,q =1 +
α

(SQCD)
s

π

{

− TF
Lt

2
+
CA

4

(

2 + Lg̃ +
∑

i=1,2

(Lg̃ − Lq̃i
)

m2
q̃i

m2
g̃ −m2

q̃1

)

+
CF

4

(

∑

i=1,2

(

− 1 − 2Lg̃ + 2Lq̃i
+ (−Lg̃ + Lq̃i

)
m2

q̃i

m2
g̃ −m2

q̃i

)

m2
q̃i

m2
g̃ −m2

q̃i

+ (−3 − 2Lg̃)

)

+ ǫ

[

− TF

4

(

L2
t + ζ(2)

)

+
CA

8

(

4 + 4Lg̃ + L2
g̃ + ζ(2)+

+
1

2

∑

i=1,2

(Lg̃−Lq̃i
)(2+Lg̃+Lq̃i

)
m2

q̃i

m2
g̃−m2

q̃i

)

+
CF

8

(

− 7−6Lg̃−2L2
g̃

− 2ζ(2)+
1

2

∑

i=1,2

(

− 3−6Lg̃−2L2
g̃+4Lq̃i

+2L2
q̃i

−(Lg̃−Lq̃1
)(3+Lg̃+Lq̃1

)
m2

q̃i

m2
g̃−m2

q̃i

)

m2
q̃i

m2
g̃−m2

q̃i

)

]}

, (4.2)

ζmb
=1 +

α
(SQCD)
s

π
CF

∑

i=1,2

{

−
(1 + L

b̃i
)

4

m2
b̃i

(m2
b̃i
−m2

g̃)
+

(3 + 2L
b̃i

)m4
b̃i
− (3 + 2Lg̃)m

4
g̃

16(m2
b̃i
−m2

g̃)
2

− (−1)iXbmg̃

m2
b̃1
−m2

b̃2

m2
b̃i
Lb̃i

−m2
g̃Lg̃

2(m2
b̃i
−m2

g̃)
+ ǫ

[

−
m2

b̃i
(2 + Lb̃i

(2 + Lb̃i
) + ζ(2))

8(m2
b̃i
−m2

g̃)

+
m4

b̃i
(7 + 2L

b̃i
(3 + L

b̃i
) + 2ζ(2)) −m4

g̃(7 + 2Lg̃(3 + Lg̃) + 2ζ(2))

32(m2
b̃i
−m2

g̃)
2

+
(−1)iXbmg̃

m2
b̃1
−m2

b̃2

m2
g̃Lg̃(2 + Lg̃) −m2

b̃i
L

b̃i
(2 + L

b̃i
)

4(m2
b̃i

−m2
g̃)

]

}

. (4.3)

In eqs. (4.1), (4.2), and (4.3), we have adopted the abbreviations

Li = ln
µ2

m2
i

, i ∈ {t, g̃, q̃1,2, b̃1,2} , (4.4)

where q̃i(b̃i) denote the super-partners of the quark q(b). For our purposes, the special case

ζe,q=b is of interest.
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The colour factors are defined in case of a gauge group SU(N) as follows

CF =
N2 − 1

2N
CA = N , TF =

1

2
. (4.5)

Furthermore, we used the notation ζ(2) = π2/6 and introduced the label “SQCD” to

specify that the strong coupling has to be evaluated within the full theory, i.e. the SQCD

with nf = ns = 6 active flavours.

The presence of the terms proportional with the parameter Xb is a manifestation of the

supersymmetry breaking. They are generated by the Yukawa interaction between left- and

right-handed bottom squarks and the CP-neutral Higgs fields. Their contribution to the

decoupling coefficient of the bottom-quark mass can be related through the Low Energy

Theorem [50] to the decay rate of the Higgs boson to bb̄ pairs. To one-loop order, the

Xb-term of eq. (4.3) coincides with the SQCD corrections to the decay rate φ → bb̄ [51].

To higher orders, the relation between the two parameters becomes more involved.

The Yukawa-coupling induced contributions attracted a lot of attention in the past

years, due to the fact that they are the dominant corrections for large values of tan β.

They may in general become comparable with the tree-level bottom-quark mass. The

resummation of the one-loop corrections was performed in ref. [30].

4.2 Two-loop calculation

The analytical two-loop results for the decoupling coefficients are too lengthy to be dis-

played here. They are available in MATHEMATICA format from http://www-ttp.particle.uni-

karlsruhe.de/Progdata/ttp08-25. Instead, we present the two-loop results for three special

cases of the hierarchy among the heavy particle masses. Before displaying the analytical re-

sults, let us notice the absence of contributions of the form α2
sX

2
b to ζmb

, in accordance with

refs. [30, 51]. They are suppressed by a factor mb/M̃ , that we neglect in the ET formalism.

4.2.1 Scenario A

We consider first the case of all supersymmetric particles having masses of the same order

of magnitude and being much heavier than the top-quark

mũ = · · · = m
b̃
= mt̃ = mg̃ = M̃ ≫ mt

α(5)
s = ζM̃

s α(SQCD)
s , m

(5)
b = ζM̃

mb
m

(SQCD)
b .

ζM̃
s , ζM̃

mb
are functions of the supersymmetric mass M̃ and the top-quark mass mt, the soft

SUSY breaking parameters Xq, q = b, t, the strong coupling constant in the full theory

α
(SQCD)
s and the decoupling scale µ. The superscript (5) indicates that the parameters

are defined in QCD with nl = 5 light quarks. In addition to the notations introduced in

eq. (4.4), the following abbreviation will be used

LM̃ = ln
µ2

M̃2
. (4.6)
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The two-loop result for the decoupling coefficient of αs in case of a degenerate SUSY mass

spectrum is known [24], however we give it here for completeness

ζM̃
s =1 +

α
(SQCD)
s

π

[

CA

(

−1

6
LM̃

)

+

(

− LM̃ − Lt

3

)

TF

]

+

(

α
(SQCD)
s

π

)2{

C2
A

(

− 85

288

− LM̃

3
+
L2

M̃

36

)

+ CFTF

[

− 31

16
− 3LM̃

2
− Lt

4
− m2

t

8M̃2
+

πm3
t

12M̃3
+

(

− 17

150
− 3LM̃

40

+
3Lt

40

)

m4
t

M̃4

]

+ CATF

[

41

36
+ LM̃ +

L2
M̃

3
− 5Lt

12
+
LM̃Lt

9
+

(

1

8
+
LM̃

4
− Lt

4

)

m2
t

m2
S

− πm3
t

6M̃3
+

(

19

144
+
LM̃

24
− Lt

24

)

m4
t

M̃4

]

+ T 2
F

(

L2
M̃

+
2LM̃Lt

3
+
L2

t

9

)

+ O
(

m5
t

M̃5

)

}

, (4.7)

ζM̃
mb

=1 − α
(SQCD)
s

π
CF

[

LM̃

4
+
Xb

4M̃

]

+

(

α
(SQCD)
s

π

)2

CF

{

−CA

(

65

1152
+

43LM̃

96
+
L2

M̃

32

)

+ CF

(

− 99

128
− 7LM̃

32
+
L2

M̃

32

)

+ TF

[

197

72
− LM̃ +

3L2
M̃

4
− Lt

12
+
L2

t

8

+

(

7

144
+
LM̃

12
− Lt

12

)

m2
t

M̃2
− π

12

m3
t

M̃3
+

(

53

600
− 7LM̃

160
+

7Lt

160

)

m4
t

M̃4

]

+
Xb

M̃

[

− CA

(

1

16
+

3LM̃

16

)

− CF

(

1

4
− 3LM̃

16

)

+ TF

[−3

4
+

3LM̃

4

+

(−7

72
− LM̃

24
+
Lt

24

)

m2
t

M̃2
+

π

24

m3
t

M̃3
+

(

− 17

450
+
LM̃

240
− Lt

240

)

m4
t

M̃4

]

]

+
Xt

M̃
TF

[

(−5

72
+
LM̃

12
− Lt

12

)

m2
t

M̃2
− π

24

m3
t

M̃3
+

(

23

450
− LM̃

60
+
Lt

60

)

m4
t

M̃4

]

+
XtXb

M̃2
TF

[

(

1

72
− LM̃

24
+
Lt

24

)

m2
t

M̃2
+

π

48

m3
t

M̃3
+

(−59

1800
− LM̃

120
+

Lt

120

)

m4
t

M̃4

]

+ O
(

m5
t

M̃5

)

}

. (4.8)

Let us point out that, according to eq. (3.4) the assumption of degenerate top-squark

masses can be materialized only if Xt → 0, due to the heavy top-quark mass. We display,

however, for completeness the full result. Further on, the hypothesis of equal top- and

bottom-squark masses is inconsistent with the SU(2) invariance of the t̃/b̃ isodublet imposed

in models like mSUGRA.

4.2.2 Scenario B

In the following, we discuss the possibility that the gluino is the heaviest supersymmetric
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particle and the squarks have equal masses, much heavier than that of the top-quark

mg̃ ≫ mũ = · · · = m
b̃
= mt̃ = mq̃ ≫ mt

α(5)
s = ζ g̃

s α
(SQCD)
s , m

(5)
b = ζ g̃

mb
m

(SQCD)
b .

The two-loop results read

ζ g̃
s =1 +

α
(SQCD)
s

π

[

CA

(

−1

6
Lg̃

)

+

(

− Lt

3
− Lq̃

)

TF

]

+

(

α
(SQCD)
s

π

)2{

C2
A

(

− 85

288
− Lg̃

3

+
L2

g̃

36

)

+ T 2
F

(

L2
t

9
+

2

3
LtLq̃ + L2

q̃

)

+ CFTF

[

− 19

16
− Lt

4
+

3Lg̃

2
− 3Lq̃ +

(

1

6
+ Lg̃

− Lq̃

)

m2
q̃

m2
g̃

+

(

1

24
+Lg̃−Lq̃

)

m4
q̃

m4
g̃

+

(

− 5

9
+
Lt

3
−Lg̃

3

)

m2
t

m2
g̃

+

(

− 9

8
+

5Lt

4
− 5Lg̃

4

)

m4
t

m4
g̃

+
m2

tm
2
q̃

m4
g̃

(

− 41

36
+

11Lt

6
− 23Lg̃

6
+ LtLg̃ − L2

g̃ + 2Lq̃ − LtLq̃ + Lg̃Lq̃ − 2ζ2

)

]

+ CATF

[

95

36
− 5Lt

12
+

3Lg̃

2
+

1

9
LtLg̃ −

Lq̃

2
+

1

3
Lg̃Lq̃ +

(

− 3Lg̃

2
+

3Lq̃

2

)

m2
q̃

m2
g̃

+

(

− 3

2
+

3Lg̃

2
− 3Lq̃

2

)

m4
q̃

m4
g̃

+

(

1

2
− Lt

4
+
Lg̃

4

)

m2
t

m2
g̃

+

(

1

4
− Lt

4
+
Lg̃

4

)

m4
t

m4
g̃

+
m2

tm
2
q̃

m4
g̃

(

1

2
− 3Lt

4
+

3Lg̃

2
− 1

2
LtLg̃ +

L2
g̃

2
− 3Lq̃

4
+

1

2
LtLq̃ −

1

2
Lg̃Lq̃ + ζ2

)

]

+ O
(

m6
q̃

m6
g̃

,
m4

q̃m
2
t

m6
g̃

,
m2

q̃m
4
t

m6
g̃

,
m6

t

m6
g̃

)

}

, (4.9)

ζ g̃
mb

=1 +
α

(SQCD)
s

π
CF

{

− 3

8
− Lg̃

4
+

(

−1

4
− Lg̃

2
+
Lq̃

2

)

m2
q̃

m2
g̃

+

(

−1

4
− 3Lg̃

4
+

3Lq̃

4

)

m4
q̃

m4
g̃

+
Xb

mg̃

[

1

2
+
Lg̃

2
− Lq̃

2
+

(

1

2
+ Lg̃ − Lq̃

)

m2
q̃

m2
g̃

+

(

1

2
+

3Lg̃

2
− 3Lq̃

2

)

m4
q̃

m4
g̃

]

}

+

(

α
(SQCD)
s

π

)2

CF

{

CA

[

− 209

1152
− 35Lg̃

48
−
L2

g̃

32
− ζ(2)

8
+

(

− 5

16
− 3Lg̃

2
−

5L2
g̃

8

+
21Lq̃

16
+

7Lg̃Lq̃

8
−
L2

q̃

4
− 5ζ(2)

8

)

m2
q̃

m2
g̃

+

(

7

32
− 11Lg̃

4
−

37L2
g̃

32
+

41Lq̃

16
+

7Lg̃Lq̃

4
−

19L2
q̃

32

− 5ζ(2)

8

)

m4
q̃

m4
g̃

]

+ CF

[

− 221

128
− Lg̃

8
+
L2

g̃

32
− ζ(2)

16
+

(

9

16
+

5L2
g̃

8
+
Lq̃

16
− 9Lg̃Lq̃

8

+
L2

q̃

2
+
ζ(2)

2

)

m2
q̃

m2
g̃

+

(

31

192
+

35Lg̃

32
+

17L2
g̃

16
− 33Lq̃

32
− 31Lg̃Lq̃

16
+

7L2
q̃

8
+
ζ(2)

8

)

m4
q̃

m4
g̃

]

+ TF

[

139

36
+

3Lg̃

2
+

3L2
g̃

8
− 11Lq̃

8
+

3L2
q̃

8
− Lt

12
+
L2

t

8
+

3ζ(2)

4
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+

(

3 +
9Lg̃

2
+ 3L2

g̃ −
15Lq̃

4
− 9Lg̃Lq̃

2
+

3L2
q̃

2

)

m2
q̃

m2
g̃

+

(

− 1

2
− Lg̃

4
+
Lq̃

4

)

m2
t

m2
g̃

−
(

1 +
Lg̃

2
−

3L2
g̃

8
− Lq̃

2
+

3Lg̃Lq̃

4
−

3L2
q̃

8
− 3ζ(2)

4

)

m2
q̃m

2
t

m4
g̃

+

(

− 5

72
+
Lq̃

24
− Lt

24

)

m4
t

m2
q̃m

2
g̃

+

(

− 155

96
− 3Lg̃

16
+

3L2
g̃

16
+

7Lq̃

8
−

3L2
q̃

16
− 11Lt

16

− 3Lg̃Lt

8
+

3Lq̃Lt

8
+

3ζ(2)

8

)

m4
t

m4
g̃

+

(

69

16
+

63Lg̃

8
+3L2

g̃−
57Lq̃

8
− 15Lg̃Lq̃

4
+

3L2
q̃

4

)

m4
q̃

m4
g̃

]

+
Xb

mg̃

[

CA

[

7

8
+ Lg̃ +

3L2
g̃

8
− 5Lq̃

8
− 3Lg̃Lq̃

8
− ζ(2)

4
+

(

9

8
+

17Lg̃

8
+

11L2
g̃

8
− 7Lq̃

4

− 2Lg̃Lq̃ +
5L2

q̃

8
− ζ(2)

4

)

m2
q̃

m2
g̃

+

(

19

16
+

27Lg̃

8
+

23L2
g̃

8
− 3Lq̃ −

37Lg̃Lq̃

8
+

7L2
q̃

4

− ζ(2)

4

)

m4
q̃

m4
g̃

]

+ CF

[

1

16
− 3Lg̃

16
−

3L2
g̃

8
− 3Lq̃

16
+

3Lg̃Lq̃

8
+
ζ(2)

2
+

(

− 9

16
− 5Lg̃

24

−
3L2

g̃

2
− Lq̃

6
+

9Lg̃Lq̃

4
−

3L2
q̃

4
+
ζ(2)

2

)

m2
q̃

m2
g̃

+

(

− 13

16
− 3Lg̃

4
−

13L2
g̃

4
+

3Lq̃

8

+
43Lg̃Lq̃

8
−

17L2
q̃

8
+
ζ(2)

2

)

m4
q̃

m4
g̃

]

+ TF

[

− 3

2
(2 + Lg̃)(1 + Lg̃ − Lq̃) +

(

− 9 − 15Lg̃

2

− 6L2
g̃ + 6Lq̃ + 9Lg̃Lq̃ − 3L2

q̃

)

m2
q̃

m2
g̃

+

(

3

2
+
Lg̃

2
− Lq̃

2

)

m2
t

m2
g̃

+

(

− 33

4
− 63Lg̃

4
− 6L2

g̃

+
57Lq̃

4
+

15Lg̃Lq̃

2
−

3L2
q̃

2

)

m4
q̃

m4
g̃

+

(

5

18
− Lq̃

6
+
Lt

6

)

m4
t

m2
q̃m

2
g̃

+

(

5

2
+

3Lg̃

2
−
L2

g̃

2
− 3Lq̃

2
+ Lg̃Lq̃ −

L2
q̃

2
− 2ζ(2)

)

m2
tm

2
q̃

m4
g̃

+

(

301

72
+

5Lg̃

8
−
L2

g̃

4
− 53Lq̃

24
−Lg̃Lq̃

4
+
L2

q̃

2
+

19Lt

12
+

3Lg̃Lt

4
− 3Lq̃Lt

4
−ζ(2)

)

m4
t

m4
g̃

]]

+
Xt

mg̃
TF

[(

1

2
− Lg̃ −

L2
g̃

4
+ Lq̃ +

Lg̃Lq̃

2
−
L2

q̃

4
− ζ(2)

2

)

m2
t

m2
g̃

+

(

1 − 7Lg̃

2
− 2L2

g̃ +
7Lq̃

2

+ 4Lg̃Lq̃ − 2L2
q̃ − 2ζ(2)

)

m2
tm

2
q̃

m4
g̃

+

(

4

9
− Lq̃

6
+
Lt

6

)

m4
t

m2
g̃m

2
q̃

+

(

17

9
− 3Lg̃ − L2

g̃ +
Lq̃

6

+ Lg̃Lq̃ +
17Lt

6
+ Lg̃Lt − Lq̃Lt − 2ζ(2)

)

m4
t

m4
g̃

]

+
XtXb

m2
g̃

TF

[

− 1

2

m2
t

m2
q̃

+

(

− 3

2
+

5Lg̃

2

+
5L2

g̃

4
− 5Lq̃

2
− 5Lg̃Lq̃

2
+

5L2
q̃

4
+

3ζ(2)

2

)

m2
t

m2
g̃

]

+O
(

m6
q̃

m6
g̃

,
m4

q̃m
2
t

m6
g̃

,
m2

q̃m
4
t

m6
g̃

,
m6

t

m6
g̃

,
XtXbm

4
t

m6
g̃

)}

.

(4.10)

4.2.3 Scenario C

Finally, we make the assumption that all squark masses are degenerate and are much
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heavier than the gluino and top masses

mũ = · · · = m
b̃
= mt̃ = mq̃ ≫ mg̃ ≫ mt

α(5)
s = ζ q̃

s α
(SQCD)
s , m

(5)
b = ζ q̃

mb
m

(SQCD)
b .

The decoupling coefficients are given by

ζ q̃
s = 1 +

α
(SQCD)
s

π

[

− 1

6
CALg̃ +

(

− Lt

3
− Lq̃

)

TF

]

+

(

α
(SQCD)
s

π

)2{

C2
A

(

− 85

288
− Lg̃

3

+
L2

g̃

36

)

+ CFTF

[

− 7

16
− Lt

4
− 3Lq̃

2
+

(

− 1

9
− Lt

12
+
Lq̃

12

)

m4
t

m4
q̃

+

(

− 1

9
− Lt

3

+
Lq̃

3

)

m2
tm

2
g̃

m4
q̃

+

(

− 3

4
− 3Lg̃

2
+

3Lq̃

2

)

m4
g̃

m4
q̃

+

(

1

18
+
Lt

6
− Lq̃

6

)

m2
t

m2
q̃

]

+ T 2
F

(

L2
t

9

+
2

3
LtLq̃ + L2

q̃

)

+ CATF

[

41

36
− 5Lt

12
+

1

9
LtLg̃ + Lq̃ +

1

3
Lg̃Lq̃ +

(

− Lt

4
+
Lq̃

4

)

m2
t

m2
q̃

+

(

1

3
− Lg̃

2
+
Lq̃

2

)

m2
g̃

m2
q̃

+

(

− Lt

4
+
Lq̃

4

)

m4
t

m4
q̃

+

(

1

12
− Lg̃

2
+
Lq̃

2

)

m4
g̃

m4
q̃

+
m2

tm
2
g̃

m4
q̃

(

7

18
− 3Lt

4
− 13Lg̃

12
+

1

2
LtLg̃ +

11Lq̃

6
− 1

2
LtLq̃ −

1

2
Lg̃Lq̃ +

L2
q̃

2
+ ζ2

)

]

+O
(

m6
g̃

m6
q̃

,
m4

g̃m
2
t

m6
q̃

,
m2

g̃m
4
t

m6
q̃

,
m6

t

m6
q̃

)

}

, (4.11)

ζ q̃
mb

= 1 +
α

(SQCD)
s

π
CF

{

− 1

8
− Lq̃

4
+

m2
g̃

4m2
q̃

+

(

1

4
− Lg̃

4
+
Lq̃

4

)

m4
g̃

m4
q̃

+
Xb

mq̃

[

− mg̃

2mq̃

+

(

− 1

2
+
Lg̃

2
−Lq̃

2

)

m3
g̃

m3
q̃

]}

+

(

α
(SQCD)
s

π

)2

CF

{

CA

[

295

1152
−Lg̃

24
+
L2

g̃

16
−Lq̃

2
−

3L2
q̃

32

−ζ(2)
2

+

(

15

16
+
Lg̃

2
− 5Lq̃

16
− 5ζ(2)

8

)

m2
g̃

m2
q̃

+

(

19

16
+

3Lg̃

16
+

7L2
g̃

32
+

13L2
q̃

32
− 5Lg̃Lq̃

8

−5ζ(2)

8

)

m4
g̃

m4
q̃

]

+ CF

[

− 205

128
− 3Lq̃

16
+
L2

q̃

32
+

15ζ(2)

16
+

(

− 3

2
− Lq̃

16
+

5ζ(2)

4

)

m2
g̃

m2
q̃

+

(

− 187

64
− 39Lg̃

32
−

7L2
g̃

8
+

37Lq̃

32
+

29Lq̃Lg̃

16
−

15L2
q̃

16
+

13ζ(2)

8

)

m4
g̃

m4
q̃

]

+TF

[

28

9
− Lt

12
+
L2

t

8
− 5Lq̃

8
+

3L2
q̃

4
− 3ζ(2)

4
+

(

3

4
− 3Lq̃

4

)

m2
g̃

m2
q̃

+

(

− 1

2
+
ζ(2)

4

)

m2
t

m2
q̃

+

(

− 13

16
+

3Lg̃

8
− 9Lq̃

8
+

3Lg̃Lq̃

4
−

3L2
q̃

4

)

m4
g̃

m4
q̃

+

(

− 5

2
+

3ζ(2)

2

)

m2
tm

2
g̃

m4
q̃

+

(

61

288
− ζ(2)

8
+
Lt

48
− Lq̃

48

)

m4
t

m4
q̃

]

+
Xb

mq̃

[

CA

[

(

− 7

8
+

3Lg̃

8
− 3Lq̃

4
− ζ(2)

4

)

mg̃

mq̃
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+

(

− 5

8
+ 2Lg̃ −

19Lq̃

8
+

3Lg̃Lq̃

8
−

3L2
q̃

8
− ζ(2)

4

)

m3
g̃

m3
q̃

]

+ CF

[

(

− 3

16
+

3Lq̃

8

+
ζ(2)

2

)

mg̃

mq̃
+

(

− 13

16
− 13Lg̃

16
+

19Lq̃

16
− 3Lg̃Lq̃

8
+

3L2
q̃

8
+
ζ(2)

2

)

m3
g̃

m3
q̃

]

+TF

[

(

− 3

4
+

3Lq̃

2

)

mg̃

mq̃
+

(

7

4
− 3Lg̃

4
+

9Lq̃

4
− 3Lg̃Lq̃

2
+

3L2
q̃

2

)

m3
g̃

m3
q̃

+

(

13

4
− 2ζ(2)

)

m2
tmg̃

m3
q̃

]]

− Xt

mq̃
TF

ζ(2)

2

m2
tmg̃

m3
q̃

+
XtXb

m2
q̃

TF

[

ζ(2)

2

m2
t

m2
q̃

+

(

3

4
− 3Lg̃ + 3Lq̃ + 3ζ(2)

)

m2
tm

2
g̃

m4
q̃

+

(

5

9
− 2Lt

3
+

2Lq̃

3

)

m4
t

m4
q̃

]

+O
(

m6
g̃

m6
q̃

,
m4

g̃m
2
t

m6
q̃

,
m2

g̃m
4
t

m6
q̃

,
m6

t

m6
q̃

,
Xbm

5
g̃

m6
q̃

,
Xtm

5
g̃

m6
q̃

)

}

. (4.12)

We displayed in the previous expressions only the first three terms of the Taylor expan-

sions in the mass ratios. To get an idea about the convergence of the perturbative series

we fix the following input parameters: mt = 172.4 GeV, α
(SQCD)
s = 0.120, mq̃ = 500 GeV,

Xq = −4000 GeV, Xt = −400 GeV and let mg̃ vary. Even for mg̃/mq̃ = 0.5, and 2 the

approximations given above agree with the exact results with an accuracy better than 1%.

For the case of degenerate SUSY masses, i.e. mg̃/mq̃ = 1 the accuracy is even below the

per-mille level.

5. Numerical results

In this section we discuss the numerical impact of the two-loop calculations we presented

above. A first phenomenological application is the prediction of the strong coupling and

the running bottom-quark mass at high-energy scales like M̃ = 1 TeV or µGUT = 1016 GeV,

starting from their low-energy values determined experimentally.

For the energy evolution of the two parameters, we follow the method proposed in

ref. [25]: first, we compute α
(5)
s (µdec) and m

(5)
b (µdec) from α

(5)
s (MZ) and m

(5)
b (mb), respec-

tively, using the corresponding i-loop SM RGEs [35]. Here µdec denotes the energy scale at

which the heavy particles are supposed to become active, i.e. the scale where the matching

between the SM and the MSSM is performed. As pointed out in previous works [36], one

can avoid part of the complications related with the occurrence of the evanescent couplings,

performing the change of the regularization scheme from the MS to the DR scheme at the

same scale. Nevertheless, one cannot avoid the occurrence of the evanescent coupling αe in

the MS-DR relation for the bottom-quark mass. It has to be determined iteratively from

the knowledge of the strong coupling at the matching scale. For consistency, the i-loop

running parameters have to be folded with (i−1)-loop conversion and decoupling relations.

Above the decoupling scale, the energy dependence of the running parameters is governed

by the i-loop MSSM RGEs [36]. We solved numerically the system of coupled differential

equations arising from the two sets of RGEs, and implemented this procedure for i = 1, 2, 3.

– 14 –
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The decoupling scale is not a physical parameter and cannot be predicted by the theory.

It is usually chosen to be of the order of the heavy particle mass in order to circumvent

the appearance of large logarithms. At fixed order perturbation theory, it is expected that

the relations between the running parameters evaluated at high-energy scales and their

low-energy values become less sensitive to the choice of µdec once higher order radiative

corrections are considered. The dependence on the precise value of the decoupling scale is

interpreted as a measure of the unknown higher order corrections. We discuss the scale

dependence of αs(µGUT) and mb(µGUT) in figure 2 and figure 3, respectively.

For the SM parameters we used αs(MZ) = 0.1189 [26], where MZ = 91.1876 GeV [52],

mb(µb) = 4.164 GeV [27], with µb = mb(µb), and Mt = 172.4 GeV [53]. For the SQCD

parameters, we implemented their values for the SPS1a′ scenario [13]: mg̃ = 607.1 GeV,

mt̃1
= 366.5 GeV, mt̃2

= 585.5 GeV, m
b̃1

= 506.3 GeV, m
b̃2

= 545.7 GeV, ADR
t (1 TeV) =

−565.1 GeV, ADR
b (1 TeV) = −943.4 GeV, µ = 396.0 GeV, and tan β = 10.0 .

For the calculation of ζmb
to two-loop accuracy, the DR parameter Ab has to be con-

verted to the renormalization scheme we used here.1 For the accuracy level we are consid-

ering, the one-loop conversion relation is required

Amixed
b = ADR

b + ∆Ab , where ∆Ab = δADR
b − δAmixed

b . (5.1)

The counterterms δAi
b were defined in eq. (3.6) and the superscript i indicates the renor-

malization scheme. The shift ∆Ab is a finite quantity as it can be explicitly checked. It

depends in turn on the running bottom quark mass in the MSSM. We use an iterative

method and choose the running bottom quark mass in the SM as the initial parameter.

A stable solution is obtained after few iterations. In addition, the energy evolution of the

parameter Ab has to be taken into account. We use here the one-loop RGE, that can be

derived from eq. (3.6).

The dependence on the decoupling scale for αs(µGUT) is displayed in figure 2. The

dotted, dashed and solid lines denote the one-, two-, and three-loop running, where the

corresponding exact results for the decoupling coefficients have been implemented. One can

see the improved stability of the three-loop results w.r.t. the decoupling-scale variation. The

uncertainty induced by the current experimental accuracy on αs(MZ), δαs = 0.001 [26], is

indicated by the hatched band.

In order to get an idea of the effects induced by the SUSY mass parameters on

αs(µGUT), we show through the dash-dotted line the three-loop results if the SUSY pa-

rameters corresponding to the Snowmass Point SPS2 [55] are adopted. Their explicit

values are: mg̃ = 784.4 GeV, mt̃1
= 1003.9 GeV, mt̃2

= 1307.4 GeV, m
b̃1

= 1296.6 GeV,

m
b̃2

= 1520.1 GeV, and tanβ = 10.0. The curves induced by the other benchmark points

SPSi, with i = 3, 4, . . . , 9 would lie between the two curves displayed here. One clearly

notices the great impact of the SUSY-mass pattern on the predicted value of the strong

coupling at high energies. Accordingly, for precision studies the explicit mass pattern of

heavy particles must be taken into account.

1See ref. [54] for a detailed discussion.
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Figure 2: αs(µGUT) as a function of µdec. Dotted, dashed and solid lines denote the one-, two-,

and three-loop contributions, respectively, obtained by using for the input parameters their values

for the SPS1a′ benchmark point. The dash-dotted line shows the three-loop running corresponding

to the SPS2 point.

In figure 3 the scale dependence for mb(µGUT) is shown. The fine-dotted, dashed

and solid lines correspond to the exact one-, two-, and three-loop running obtained in

the SPS1a′ scenario. As explained above, the energy evolution of the running parameters

have to be combined with the appropriate matching conditions between the low- and high-

energy regimes. More explicitly, in case of mb we determine its value within SQCD at the

energy-scale µdec through the relation

mSQCD
b (µdec) =

m
(5)
b (µdec)

ζmb
(µdec)

, where
1

ζmb

=
1

1 + δζtan β
mb

+ δζrest
mb

. (5.2)

Here δζtan β
mb

denotes the contributions proportional with tanβ and δζrest
mb

the remaining

corrections. For simplicity, we do not show in eq. (5.2) the explicit dependence on the

MSSM parameters. For the i-loop running analysis, we take into account the (i− 1)-loop

contribution to the eq. (5.2). As can be seen from the figure 3, the three-loop results

stabilize the scale dependence and reduce further the theoretical uncertainty.

The dotted line displays the two-loop running bottom-mass, where the contributions

proportional with tan β to the one-loop ζmb
are resummed following the method proposed
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Figure 3: mb(µGUT) as a function of µdec. The fine-dotted, dashed and solid lines denote the

one-, two-, and three-loop contributions to the running bottom mass for SPS1a′ benchmark point,

respectively. The dotted line displays the two-loop running, where the tanβ enhanced contribu-

tions are resummed according to ref. [30]. The dash-dotted line represents the three-loop running

corresponding to the SPS2 benchmark point.

in refs. [30, 13]. Within this approach, the matching condition can be written as

mSQCD
b (µdec) =

m
(5)
b (µdec)

ζ1−loop
mb

(µdec)
and

1

ζ1−loop
mb

=
1 − δζrest,1−loop

mb

1 + δζtan β,1−loop
mb

. (5.3)

The superscript 1 − loop indicates the order in perturbation theory at which the individual

contributions are evaluated. The authors of ref. [30] showed that, for a consistent analysis

not only the tanβ-enhanced contributions have to be resummed, but also the next-to-

leading logarithms (NLL) αi+1
s lni(µ2/m2

b). In our approach based on i-loop RGEs and

(i − 1)-loop decoupling coefficients the NLL are implicitly resummed. The very good

agreement between the two computations can be explained by the fact that at one-loop

order δζrest
mb

is almost an order of magnitude smaller than δζtan β
mb

.

The experimental uncertainty generated by δ αs = 0.001 [26] corresponds to the wider

hatched band, and the one due to δ mb = 25 MeV [27] to the narrow band. Let us no-

tice that the three-loop order effects exceed the uncertainty due to current experimental

accuracy δαs.

Finally, the dash-dotted line shows the three-loop running if the SPS2 scenario is

implemented. The differences between the three-loop order results are mainly due to the

change of masses of the SUSY particles.
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µren = 1000 GeV

αs(µren) 0.0929 ±0.0006|δ αs(MZ ) −0.003|SPS2 ±0.0001|th
mb(µren) 2.164 ±0.017|δ αs(MZ) ±0.015|δ mb(mb) +0.12|SPS2 ±0.01|th

µren = µGUT

αs(µren) 0.0405 ±0.0001|δ αs(MZ ) ±0.0007|SPS2 ±0.0001|th
mb(µren) 1.016 ±0.011|δ αs(MZ ) ±0.007|δ mb(mb) +0.077|SPS2 ±0.005|th

Table 1: Numerical results for the strong coupling and bottom-quark mass for µ = 1000GeV and

µ = µGUT, respectively. The experimental inaccuracy is evaluated taking into account the present

uncertainty on αs(MZ) and mb(mb). The effects of the SUSY-mass parameters are evaluated w.r.t.

the SPS2 benchmark point. The theoretical uncertainties due to unknown higher order corrections

are estimated from the variation with the decoupling scale for 100 GeV ≤ µdec ≤ 1 TeV.

For quantitative comparison, we give in table 1 the numerical values for αs(µren) and

mb(µ) for µren = 1000 GeV and µren = µGUT, evaluated with three-loop accuracy. For the

decoupling scale we choose µdec = 600 GeV as at this scale the difference between the two-

and three-loop order corrections reaches a minimum. The different sources of uncertain-

ties are explicitly displayed. The theoretical uncertainties due to unknown higher order

corrections are estimated from the variation of the three-loop results when the decoupling

scale is modified from 100 GeV to 1TeV. The effects of the SUSY-mass parameters are

evaluated as the difference between the three-loop results corresponding to the benchmark

points SPS1a′ and SPS2. One can easily see that the impact of the SUSY-mass pattern is

at least five times larger than the experimental accuracy.

As already pointed out in the previous sections the unification of the Yukawa couplings

is very sensitive to the MSSM parameters. The dependence on the soft SUSY breaking

parameters is induced in our approximation only through the decoupling coefficients. They

comprise an explicit dependence through the Xb parameter (in the case of ζmb
) and an

implicit one through the squark masses.

The analytical formulae for ζs and ζm given in section 4.2 are expressed in terms of the

physical squark masses. Since they are not known experimentally, for the following numeri-

cal analyses, we computed them making the assumption that the soft SUSY breaking mass

parameters defined in the on-shell scheme obey the following relation MQ̃(t) = MD̃(M̃ ) =

MŨ (M̃) = Af = ±µ = M̃ , where MQ̃(t) is the on-shell input parameter in the stop-mass

matrix.2 The corresponding input parameter in the sbottom-mass matrix acquires a finite

shift of O(αs) [56]. Upon diagonalization of the squark-mass matrices eq. (3.1), one ob-

tains the on-shell squark masses mq̃1,2
. The parameter Ab entering through Xb the one-loop

results have to be converted from the on-shell scheme in the renormalization scheme we

introduced in section 2.

In order to estimate the phenomenological impact, we discuss the difference between

2See section 3 for definitions and refs. [56, 57] for a comprehensive discussion.
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Figure 4: ∆mb/mb as a function of tanβ for µ < 0 (a) and µ > 0 (b). The soft SUSY

breaking mass parameters are fixed to 1 TeV and the gluino mass to Mg̃ = 800GeV.

mb(µGUT) evaluated using i-loop running and (i−1)-loop decoupling and the one-loop result

∆m
(i)
b

mb
=
m

(i-loop)
b −m

(1-loop)
b

m
(1-loop)
b

. (5.4)
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Figure 5: ∆mb/mb as a function of M̃ for µ < 0 (a) and µ > 0 (b). tanβ is fixed to 50

and the gluino mass is Mg̃ = 0.8M̃ .

In figure 4 we fix the soft SUSY breaking mass parameters to M̃ = 1 TeV and Mg̃ =

800 GeV, and study the dependence of ∆m
(i)
b for i = 2 (dashed) and i = 3 (solid line)

as a function of tanβ. One can clearly see the abrupt increase/decrease of the two- and

three-loop order radiative corrections with the increase of tanβ. Whereas the effects of the
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the one-loop decoupling can be as large as 65% for µSUSY < 0 and −37% for µSUSY > 0,

the two-loop corrections are moderate, reaching at most 10% and −3%, respectively.

The numerical effects for large values of tan β are of special interest for the study of

Yukawa-coupling unification. In figure 5 we show ∆m
(i)
b as a function of the soft SUSY

breaking mass scale for tan β = 50. One can see the increase in size of radiative corrections

for lighter SUSY masses. Again, for µSUSY > 0 the bulk of the corrections are comprised in

the two-loop running mass, while the three-loop order effects sum up to few percent. For

µSUSY < 0 and light SUSY masses the three-loop contributions can increase the bottom-

quark mass with up to 30%.

6. Conclusions

The knowledge of fundamental parameters at high energies, such as M̃ or µGUT, are es-

sential for the reconstruction of the theory beyond the SM. In this paper we presented the

exact two-loop decoupling coefficients of the strong coupling and the bottom-quark mass

within the SQCD. Together with the known three-loop order RGEs they allow predictions

of the two parameters at high energies with three-loop accuracy. This level of precision

on the theory side is necessary in order to match with the current experimental accuracy.

The values of the gauge and Yukawa couplings at the unification scale µGUT are essential

ingredients for the determination of the GUT threshold corrections, which in turn are used

to identify the underlying GUT model.

In addition, the dependence on the energy scale at which the supersymmetric particles are

integrated out, which reflects the size of the unknown higher order corrections, is signifi-

cantly reduced in the case of the three-loop order predictions.

Furthermore, the approach outlined here accounts for the effects induced by the indi-

vidual mass parameters. They are phenomenologically significant for both parameters and

exceed the experimental uncertainty by more than a factor five.

The radiative corrections to the running bottom-quark mass are particularly important

for SUSY models with large values of tanβ. It turns out that for negative values of µSUSY

the three-loop order contributions can reach up to 30% from the tree-level bottom-quark

mass. Furthermore, they clearly stabilize the perturbative behaviour. These features render

them indispensable for studies concerning the Yukawa-coupling unification.
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